PAPER

Synthesis and characterization of ionic liquids based upon 1-butyl-2,3-dimethylimidazolium chloride/ZnCl₂

www.rsc.org/njc

Vincent Lecocq,^a Aurélie Graille,^a Catherine C. Santini,*a Anne Baudouin,^a Yves Chauvin,^a Jean Marie Basset, a Laurence Arzel, Denis Bouchu and Bernard Fenetc

- ^a Laboratoire de Chimie Organométallique de Surface (CNRS UMR 9986), ESCPE Lyon, 43 bd du 11 Novembre 1918, F-69626 Villeurbanne cedex, France. E-mail: santini@cpe.fr; Fax: +33 (0)4 72 43 17 95; Tel: +33 (0)4 72 43 17 94
- ^b Centre Commun de Spectrométrie de Masse, ESCPE Lyon, 43 bd du 11 Novembre 1918, F-69626 Villeurbanne cedex, France
- ^c Laboratoire de Résonance Magnétique Nucléaire: Méthodologie et Instrumentation en Biophysique (CNRS UMR 5012), Université Claude Bernard (Lyon I), 3, rue Victor Grignard, F-69616 Villeurbanne cedex, France

Received (in Montpellier, France) 30th August 2004, Accepted 12th January 2005 First published as an Advance Article on the web 21st March 2005

Trialkylimidazolium chlorozincate molten salts resulting from the combination of zinc chloride and 1-butyl-2,3-dimethylimidazolium chloride, [BMMI][Cl], have been prepared with a mole percent of ZnCl₂, R $(R = n_{ZnCl_2}/n_{ZnCl_2} + n_{[BMMI][CI]})$ equal to 0, 0.1, 0.25, 0.33, 0.5, 0.66, 0.75. Their analyses by DSC, ¹³C, ¹H and ³⁵Cl solid state and solution NMR, and mass spectrometry (ESI, MS/MS) are consistent with the presence of [BMMI][Cl] and [BMMI][ZnCl₃] for R < 0.5; pure [BMMI][ZnCl₃] for R = 0.5, and [BMMI][ZnCl₃] with [BMMI][Zn₃Cl₇] for R > 0.5. Infrared spectra realized in the presence of pyridine show that the Lewis acidity of ZnCl₂-[BMMI][Cl] increases with R. High temperature (110 °C) ¹³C and ³⁵Cl NMR experiments on neat [BMMI][ZnCl₃] (R = 0.5) evidenced that its structure varies with time from [BMMI][ZnCl₃] to [BMMI \cdots Cl \cdots ZnCl₂].

Introduction

Application of ionic liquids in biphasic catalysis has blossomed within the last decade and has been driven by the need for environmentally friendly solvents. Comprehensive information about the latest developments may be found in recent reviews. 1-7 Most importantly, it is possible to tune the physical and chemical properties of ionic liquids by varying the nature of the cations and the anions. In particular, depending on the coordinative properties of the anion or/and activity of the cation, ionic liquids can be considered as both the solvent and co-catalyst or as the catalyst itself. Indeed, the development of acidic ionic liquids, derived from metal halides, as replacements for traditional acids has received significant attention.^{7–13} Currently, two types of ionic liquids are largely developed: those based on chlorometallate anions and those based on non-metal-containing anions, such as BF_4^- and $(CF_3SO_2)_2N^{-.8}$ This paper is focused on the former, which are reviewed below, in order to demonstrate that most of the metal chlorides, even with a low acidity, can form, with any organic halide, a salt with a low melting point. We also emphasize the fact that few of them can afford polynuclear

The *n*-butylpyridinium salts with $AlCl_3$ were described as the first room temperature molten salt. Similar results were obtained with *n*-alkylimidazolium salts as cations. 15 Chloroaluminate anions have been widely characterized, by NMR spectroscopy (²⁷Al, ³¹P and ¹H), ^{9,11,16,17} Raman scattering, ¹⁸ and by other techniques such as UV and IR spectroscopies and electrochemical methods. ^{19,20} Depending on the relative proportion of AlCl₃, several equilibria were evidenced, however, only two anions are coexisting. Above 3 equiv. AlCl₃ is in excess and could be sublimed:

$$Cl^- + AlCl_3 \leftrightarrow AlCl_4^-$$

 $AlCl_4^- + AlCl_3 \leftrightarrow Al_2Cl_7^-$
 $Al_2Cl_7^- + AlCl_3 \leftrightarrow Al_3Cl_{10}^-$

The acidity of these ionic liquids refers to the acidity of an anionotropic solvent system, in which a base is a substance that liberates Cl⁻ while an acid consumes it. 16 The polynuclear anions, such as Al₂Cl₇⁻, are acidic because they contain an excess of AlCl₃, which can be neutralized with nonmetal chlorides such as KCl:

$$Al_2Cl_7^- + M^+Cl^- \rightarrow 2AlCl_4^- + M^+$$

The water sensitivity of chloroaluminate led to use numerous other anhydrous metal salts. However, few gave materials that were liquid below 100 °C.21

Only in the case of FeCl₃, ZnCl₂ and SnCl₂ was the formation of polynuclear anions reported. With FeCl₃, Raman scattering indicated the presence of FeCl₄⁻, then the formation of Fe₂Cl₇⁻ when FeCl₃ is in excess. With FeCl₂ the only observed iron-containing species was FeCl₄²⁻. In the mixed melts containing both FeCl₃ and FeCl₂, only the mononuclear anions FeCl₄⁻ and FeCl₄² were formed.^{22–23} With SnCl₂ and ZnCl₂, for a ratio of 2:1 relative to the cation, SnCl₃⁻ and $Sn_2Cl_5^-$ and $ZnCl_3^-$, $Zn_2Cl_5^-$, $Zn_3Cl_7^-$, respectively, were identified by negative FAB mass spectra. 21,24,25 In contrast, CuCl, InCl₃, AuCl₃ and TeCl₄ with imidazolium chloride

formed only monometal chloride anions, $CuCl_2^-$, $AuCl_4^-$, $TeCl_6^{2-}$ and $InCl_4^{-1}$. 26,27

The preparation of ionic liquids using zinc chloride with pyridinium, ²⁸ quaternary ammonium salt, ²¹,24,29 and imidazolium salts has been reported. ^{30–33} These ionic liquids, less water sensitive than the chloroaluminate analogues, were used for zinc and zinc alloy deposition, ³⁴ in a Friedel–Craft reaction, ³⁵ regiospecific synthesis of Fisher indole, ³⁶ and for various catalytic reactions. ^{37–41} Generally, ionic liquids containing zinc chloride as the anion improved the catalytic results. This can be explained at least in part by the fact that the zinc chloride anion is a co-catalyst. For example, the best conversion and selectivity in the isomerization of 2-methyl-3-butenenitrile into 3-pentenenitrile, ^{40,41} were obtained with 1-butyl-2,3,-dimethyimidazolium [BMMI] as the counter-cation and chlorozincate as the anion. ⁴² However, structural properties and the presence of a Lewis acidic centre in ionic liquids using zinc chloride has not yet been clearly established. ⁴³

In this paper we report the synthesis of molten salts resulting from the combination of zinc chloride and 1-butyl-2,3-dimethylimidazolium chloride, [BMMI][Cl], and their characterization by DSC, ¹³C, ¹H and ³⁵Cl solid state and solution NMR, at variable temperature, and mass spectrometry (ESI, MS/MS).

Experimental

Materials and methods

All operations were performed in the strict absence of oxygen and water under a purified argon atmosphere using glove box (Jacomex or M Braun) or vacuum line techniques. Under argon, solvents were distilled using the appropriate drying agents: pyridine from CaH₂ and acetonitrile- d_3 (99% deuterium) from P₂O₅ and stored over molecular sieves. ZnCl₂ (99.999%, H₂O < 100 ppm) was obtained from Aldrich and dehydrated with trimethylchlorosilane before use. ⁴⁴ 1-Chlorobutane and 1,2-dimethylmidazole, obtained from Aldrich, were freshly distilled before use. 1-Butyl-2,3-dimethylmidazolium chloride [BMMI][Cl] was synthesized as described in the literature. ⁴⁵

DSC procedures. The differential scanning calorimetry (DSC) experiments used a Mettler DSC 12 apparatus. DSC traces were typically scanned from 10 or 25 °C to 300 °C at a speed of 10 °C min⁻¹. Each sample was allowed to equilibrate for several minutes at 10 or 25 °C before the scan was initiated. All scans were done using increasing temperature only and were highly reproducible. Each peak of in the DSC traces indicates a transition temperature of the ZnCl₂–[BMMI][Cl] mixture of a given compositions. In the glove box, samples of up to 40 mg were sealed in aluminum crucibles. For ionic liquids showing transition phase peaks, a second identical ramping of the temperature after cooling was performed.

 1 H, 13 C, 35 Cl liquid NMR. Solution NMR spectra were recorded on a Bruker Avance 300 MHz spectrometer for 1 H and 13 C and a DRX 500 MHz instrument for 35 Cl. Chemical shifts were measured relative to SiMe₄ as internal standard for 1 H and 13 C and relative to external HCl (0.1 M in H₂O) for 35 Cl. The sample for 35 Cl NMR was prepared as follows: [BMMI][Cl] or [BMMI][ZnCl₃] (R = 0.5) was introduced in a NMR tube (5 mm) in the glove box. Then, the NMR tube was put inside a Schlenk tube, which was heated, under argon, until the compounds were liquefied and then put under vacuum for 1 h. A capillary of DMSO- d_6 was introduced under argon into the molten solid.

¹H and ¹³C solid state NMR. Solid state NMR spectra were recorded on a Bruker DSX-300 spectrometer equipped with a standard 4 mm double-bearing probe head and operating at 75.47 and 300.18 MHz for ¹³C and ¹H, respectively. ¹³C NMR spectra were recorded as follows: 30° pulse on ¹³C nuclei and acquisition under a 80 KHz decoupling field on protons, with 1 s recycle delay and 5 KHz spinning speed unless otherwise specified.

Mass spectrometry. Mass spectra were acquired on a ThermoFinnigan LCQ Advantage ion trap instrument, detecting positive and negative ions in the electrospray ionization (ESI) mode. Samples (1 to 10 μg ml $^{-1}$ in acetonitrile) were infused directly into the source (5 μ l min $^{-1}$) using a syringe pump. The following source parameters were applied: spray voltage 3.0–3.5 kV, nitrogen sheath gas flow 5–20 arbitrary units. The heated capillary was held at 200 °C. MS spectra were obtained by applying a relative collision energy of 25–40% of the instrumental maximum.

Infrared spectroscopy. Infrared spectra were recorded on a Nicolet 550 FT spectrometer by using a liquid infrared cell equipped with KBr windows. Typically, 16 scans were accumulated for each spectrum. Pyridine (4 μl) was added to 0.1 M of ionic liquids in CD₃CN, in order to obtain a molar ratio of pyridine to ionic liquid equal to 1.

Preparation of ionic liquids

The ionic liquids over the whole range of compositions, that is with a ZnCl₂ mole fraction in the mixture $R = n_{\rm ZnCl_2}/(n_{\rm ZnCl_2} + n_{\rm [BMMI][CI]}) = 0.10, 0.25, 0.33, 0.50, 0.66 and 0.75, were prepared by addition, at 105 °C, of ZnCl₂ into molten [BMMI][Cl] under a dry argon atmosphere. As an example, for the synthesis of [BMMI][ZnCl₃] with <math>R = 0.5$, anhydrous zinc dichloride (2.73 g, 0.02 mol) was slowly added under argon into melted 1-butyl-2,3-dimethylimidazolium chloride (3.8 g, 0.02 mol) and the mixture was stirred at 105 °C for 12 h.

R = 0.5. ¹³C NMR (CD₃CN, δ): 145.40 (s, C₂), 123.43 and 121.95 (d, C_{4,5}), 48.99 (s, C₈), 35.83 (s, C₆), 32.39 (s, C₉), 20.16 (s, C₁₀), 13.83 (s, C₇), 10.25 (s, C₁₁). ¹³C Solid-state NMR (δ): 146.66 (C₂), 123.24 and 122.23 (C_{4,5}), 49.59 (C₈), 34.59 (C₆), 32.07 (C₉), 21.92 (C₁₀), 15.06 (C₇), 12.34 (C₁₁). MS (m/z for the major peak with ³⁵Cl) ESI⁺: 153.1 [BMMI]⁺ (100%), 340.8 [(BMMI)₂Cl]⁺ (56.9%). ESI⁻: 410.9 [(BMMI)₂Cl₃]⁻ (100%), 600.8 [(BMMI)₃Cl₄]⁻ (65.0%), 788.8 [(BMMI)₄Cl₅]⁻ (25.0%), 976.9 [(BMMI)₅Cl₆]⁻ (10.0%).

R = 0.1. [BMMI][Cl] (5 g, 26.5 mmol); ZnCl₂ (0.402 g, 2.95 mmol). ¹³C NMR (CD₃CN, δ): 145.42 (s, C₂), 123.45 and 121.95 (d, C_{4,5}), 49.00 (s, C₈), 35.87 (s, C₆), 32.39 (s, C₉), 20.16 (s, C₁₀), 13.84 (s, C₇), 10.30 (s, C₁₁). ¹³C Solid-state NMR (δ): 146.66 (C₂), 123.24 and 122.23 (C_{4,5}), 48.08 (C₈), 37.8 (C₆), 32.07 (C₉), 21.92 (C₁₀), 15.06 (C₇), 12.34 (C₁₁). MS (m/z for the major peak with ³⁵Cl) ESI⁺: 153.1 [BMMI]⁺ (100%), 340.8 [(BMMI)₂Cl]⁺ (11.2%). ESI⁻: 171.0 [Zn³⁵Cl₃]⁻ (15.3%), 410.9 [(BMMI)₂Cl₃]⁻ (50.7%), 600.8 [(BMMI)₃Cl₄]⁻ (95.9%), 788.8 [(BMMI)₄Cl₅]⁻ (87.7%), 976.9 [(BMMI)₅Cl₆]⁻ (100%).

R = 0.25. [BMMI][CI] (4.073 g, 21.61 mmol); ZnCl₂ (0.9815 g, 7.2 mmol). ¹³C NMR (CD₃CN, δ): 145.42 (s, C₂), 123.46 and 121.94 (d, C_{4.5}), 49.03 (s, C₈), 35.94 (s, C₆), 32.38 (s, C₉), 20.17 (s, C₁₀), 13.85 (s, C₇), 10.34 (s, C₁₁). ¹³C Solid-state NMR (δ): 146.66 (C₂), 123.24 and 122.23 (C_{4.5}), 49.59 and 48.08 (C₈), 37.8 and 34.59 (C₆), 32.07 and 31.22 (C₉), 21.92 and 19.07 (C₁₀), 15.06 and 14.68 (C₇), 12.34 and 11.32 (C₁₁). MS (m/z for the major peak with ³⁵Cl) ESI⁺: 153.1 [BMMI]⁺ (100%), 340.8

[(BMMI₂Cl]⁺ (5.3%). ESI⁻: 171.0 [ZnCl₃]⁻ (41.5%), 410.9 [(BMMI)₂Cl₃]⁻ (67.1%), 600.8 [(BMMI)₃Cl₄]⁻ (100.0%), 788.8 [(BMMI)₄Cl₅]⁻ (94.1%), 976.9 [(BMMI)₅Cl₆]⁻ (80%).

R = 0.33. [BMMI][Cl] (4.07 g, 22 mmol); ZnCl₂ (1.47 g, 11 mmol). ¹³C NMR (CD₃CN, δ): 145.41 (s, C₂), 123.47 and 121.94 (d, C_{4,5}), 49.07 (s, C₈), 36.00 (s, C₆), 32.37 (s, C₉), 20.18 (s, C₁₀), 13.85 (s, C₇), 10.38 (s, C₁₁). ¹³C Solid-state NMR (δ): 146.66 and 145.79 (C₂), 123.24 and 122.23 (C_{4,5}), 49.59 and 48.08 (C₈), 37.8 and 34.59 (C₆), 32.07 and 31.22 (C₉), 21.92 and 19.07 (C₁₀), 15.06 and 14.68 (C₇), 12.34 and 11.32 (C₁₁). MS (m/z for the major peak with ³⁵Cl) ESI⁺: 153.1 [BMMI]⁺ (100%), 340.8 [(BMMI)₂Cl]⁺ (2.9%). ESI⁻: 171.0 [ZnCl₃]⁻ (100%), 410.9 [(BMMI)₂Cl₃]⁻ (57.1%), 600.8 [(BMMI)₃Cl₄]⁻ (74.3%), 788.8 [(BMMI)₄Cl₅]⁻ (75.7%), 976.9 [(BMMI)₅Cl₆]⁻ (35.7%).

R = 0.5. [BMMI][Cl] (3.8 g, 20 mmol); ZnCl₂ (2.73 g, 20 mmol). ¹³C NMR (CD₃CN, δ): 145.41 (s, C₂), 123.35 and 121.87 (d, C_{4,5}), 49.06 (s, C₈), 35.94 (s, C₆), 32.34 (s, C₉), 20.17 (s, C₁₀), 13.81 (s, C₇), 10.30 (s, C₁₁). ¹³C Solid-state NMR (δ): 145.79 (C₂), 124.05 and 121.47 (C_{4,5}), 48.08 (C₈), 37.8 (C₆), 31.22 (C₉), 19.07 (C₁₀), 14.68 (C₇), 11.32 (C₁₁). MS (m/z for the major peak with ³⁵Cl) ESI⁺: 153.1 [BMMI]⁺ (100%), 340.8 [(BMMI)₂Cl]⁺ (4.7%). ESI⁻: 171.0 [ZnCl₃]⁻ (100%).

R = 0.66. [BMMI][Cl] (2.54 g, 13.5 mmol); ZnCl₂ (3.71 g, 27 mmol). ¹³C NMR (CD₃CN, δ): 145.42 (s, C₂), 123.31 and 121.85 (d, C_{4,5}), 49.05 (s, C₈), 35.90 (s, C₆), 32.32 (s, C₉), 20.15 (s, C₁₀), 13.82 (s, C₇), 10.29 (s, C₁₁). ¹³C Solid-state NMR (δ): 144.81 (C₂), 122.88 and 119.01 (C_{4,5}), 49.28 and 48.08 (C₈), 35.49 (C₆), 31.22 (C₉), 20.30 (C₁₀), 14.68 (C₇), 11.32 (C₁₁). MS (m/z for the major peak with ³⁵Cl) ESI⁺: 153.1 [BMMI]⁺ (100%), 340.8 [(BMMI)₂Cl]⁺ (6.5%). ESI⁻: 171.0 [ZnCl₃]⁻ (100%), 306.6 [Zn₂Cl₅]⁻ (44.1%), 442.4 [Zn₃Cl₇]⁻ (85.3%).

R = 0.75. [BMMI][Cl] (1.64 g, 8.68 mmol); ZnCl₂ (3.55 g, 26.05 mmol). ¹³C NMR (CD₃CN, δ): 145.39 (s, C₂), 123.30 and 121.84 (d, C_{4,5}), 49.05 (s, C₈), 35.91 (s, C₆), 32.31 (s, C₉), 20.19 (s, C₁₀), 13.83 (s, C₇), 10.29 (s, C₁₁). ¹³C Solid-state NMR (δ): between 146.62 and 144.25 (m, C₂), between 126.00 and 118.13 (m, C_{4,5}), between 48.48 and 48.14 (C₈), 34.57 (C₆), 31.22 (C₉), 20.02 (C₁₀), 14.68 (C₇), 11.32 (C₁₁). MS (m/z for the major peak with ³⁵Cl) ESI⁺: 153.1 [BMMI]⁺ (100%), 340.8 [(BMMI)₂Cl]⁺ (8.2%). ESI⁻: 171.0 [ZnCl₃]⁻ (61.2%), 306.6 [Zn₂Cl₅]⁻ (42.9%), 442.4 [Zn₃Cl₇]⁻ (100%).

Results

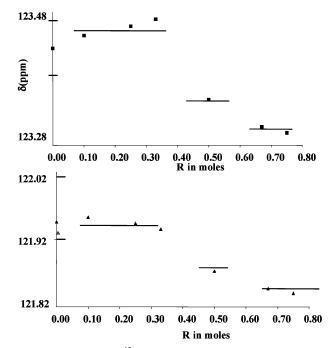
The ionic liquids have been synthesized by the slow addition of solid anhydrous $ZnCl_2$ into melted [BMMI][Cl], eqn. (1), x was the number of equivalents of $ZnCl_2$ versus [BMMI][Cl], and R, the mole ratio of $ZnCl_2$.

DSC (differential scanning calorimetry)

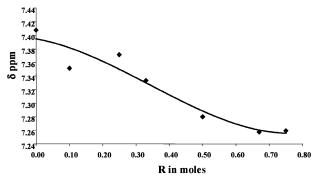
Table 1 shows the DSC transition temperatures (to the nearest degree), thermal decomposition temperatures and liquidus ranges of the ZnCl₂–[BMMI][Cl] mixtures. According to Table 1, for each ionic liquid, the melting point is lower than

Table 1 Transition temperatures, thermal decomposition temperatures and liquidus ranges from DSC thermograms of the $ZnCl_2$ –[BMMI][Cl] mixtures for various mole ratios R

	Transition temperature/°C				M.p./	$\theta_{ m decomp}/$	Liquidus
R	Peak 1	Peak 2	Peak 3	Peak 4	$^{\circ}$ C a	°C	range ^b /°C
0	104.6	_	_	_	104.6	230	125.4
0.1	64	97.5	_	_	97.5	240	142.8
0.25	68.2	_		_	68.2	240	171.8
0.33	56.4	69.5	85.8	98.1	69.5	210	140.5
0.5	58.7	90.8			90.8	> 300	209.2
0.66	_	_		_	78.0^{c}	> 300	222.0
0.75	88.4	_		_	88.4	280	191.6


^a The melting point corresponds to the most intense peak in the DSC trace. ^b Corresponds to the temperature range between melting and decomposition. ^c For R=0.66, m.p. was measured on a digital electrothermal melting point apparatus.

100 °C, the thermal decomposition is above 210 °C and the liquidus range between 125 °C and 210 °C. Both the decomposition temperature and liquidus range roughly increase with R. For all liquids except R=0 and 0.5, cooling from the liquid state caused glass formation. For R=0.5, an initial transition temperature was observed at 58.7 °C. This transition is not reversible, but was reproducible for independently prepared samples. Similar observations have already been reported with 1-alkyl-3-methylimidazolium tetrachloropalladate(II) salts. 46

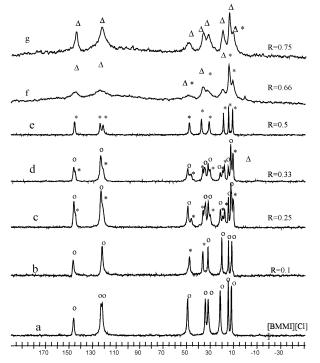

¹H, ¹³C solution NMR

The cation BMMI⁺ can be a probe to study the nature of the ionic liquid. For this purpose, solutions of the different ionic liquids in the same solvent (CD₃CN) and at the same concentration and temperature (0.1 mol 1⁻¹, 25 °C), were analysed by ¹H, ¹³C NMR.

In 13 C NMR, the evolution of the chemical shift of carbons C_2 , C_7 , C_8 , C_9 , C_{10} and C_{11} is not significant ($\Delta\delta < 0.1$). However, the chemical shifts of the ethylenic carbons C_4 and C_5 move towards higher field as R increases and they can be roughly classified into three series, one for R < 0.5, one for

Fig. 1 Variation of the 13 C NMR chemical shifts of C_4 (top) and C_5 (bottom) as a function of R (CD₃CN, 0.1 mol).

Fig. 2 Variation of the 1 H NMR chemical shifts of H₄ and H₅ as a function of R (CD₃CN, 0.1 mol).


R = 0.5 and one for R > 0.5 (Fig. 1), indicating that there are at least three different chemical environments for the imidazolium cation

In 1H NMR spectra, the chemical shifts of the ethylenic hydrogens H_4 and H_5 exhibit a monotonous decrease as R increases (Fig. 2). In 1-butyl-3-methylimidazolium chlorozincate [BMI][Zn_xCl_{2x+1}], the chemical shift of C₂–H shows a variation due to a possible hydrogen bond between the anion and the hydrogen atom on C₂ of the imidazolium ring. Similarly, in the case of [BMMI][Zn_xCl_{2x+1}], the hydrogen bond could occur between the anion and the hydrogen atoms H_4 and H_5 .

¹³C solid state NMR at 25 °C

The evolution of chemical shifts in 13 C solid state NMR, as a function of R, of the cation BMMI⁺ is given in Fig. 3. The most significant variations of chemical shifts were observed in the interval 0–70 ppm.

The solid state 13 C NMR spectrum of [BMMI][Cl] is depicted in Fig. 3, spectrum a, in which the characteristic peaks are labelled by "o". In the region 0–70 ppm, a set of six peaks corresponds to the resonance of carbon C_{6-11} (δC_6 34.6, δC_7 15.1, δC_8 49.6, δC_9 32.1, δC_{10} 21.9, δC_{11} 12.3) of the imida-

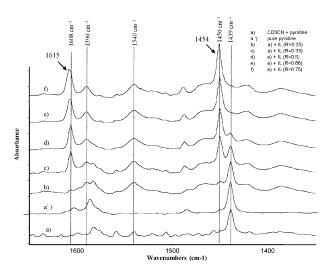
Fig. 3 13 C solid state NMR spectra of [BMMI][Zn_xCl_{2x+1}] as a function of R at 25 $^{\circ}$ C.

zolium. The peaks between 100 and 150 ppm are attributed to C_2 (146.6 ppm), C_4 (123.2 ppm) and C_5 (122.2 ppm).

$$C_{6}$$
 N_{3}
 C_{4}
 C_{5}
 C_{8}
 C_{9}
 C_{10}
 C_{11}

For the values of R = 0.1, 0.25 and 0.33 (Fig. 3, spectra b–d), besides the resonances of [BMMI][Cl] (o), another set of six peaks (labelled *) appeared. These intensity of these peaks increases with R and for R = 0.5 only these resonances are present (Fig. 3, spectrum e). Then, for R = 0.66 and R = 0.75, even if the peaks were broad, the presence of a new set of six peaks (labelled Δ) could be noticed (Fig. 3, spectra f and g). Therefore, a comparison of the spectra in Fig. 3 clearly evidences three sets of six peaks (o, * and Δ) but only two sets are present at any given value of R. These ¹³C solid state NMR spectra suggest that, at 25 °C for R = 0 and R = 0.5, there is a single product, [BMMI][Cl] and [BMMI][Zn_xCl_y], respectively. In contrast, for R < 0.5, the obtained ionic liquids are a mixture of these two products, the ratio of [BMMI] $[Zn_xCl_y]$: [BMMI][Cl] increasing with R. For ionic liquids with R > 0.5, there is no longer any [BMMI][C1].

ESI mass spectrometry


Electrospray ionization mass spectroscopy (ESI/MS) is a very useful tool for the analysis of ionic liquids^{47a} and to determine the nature of catalytic species present in it.^{47b} Positive and negative ESI mass spectra of the [BMMI][CI]–ZnCl₂ ionic liquids with various compositions were recorded in order to determine the nature of these ionic liquids.⁸

In positive mode (ESI⁺), for all ionic liquids the most intense peak occurs at m/z 153.1, corresponding to the [BMMI]⁺ ion. The peak of the ion $[(BMMI)_2Cl]^+$ at m/z = 340.8, which decreases in intensity as R increases is absent for $R \ge 0.5$. The clusters $[(BMMI)_nCl_{n-1}]^+$ are observed only for R = 0 and 0.1.

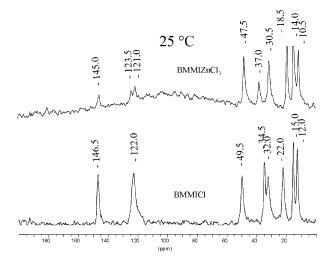
In negative mode (ESI⁻) the negative clusters due to the presence of Cl⁻ and Zn_xCl_y ⁻ anions are observed. No peaks corresponding to oxohalogenated species such as ZnOCl⁻ (m/z 117), Zn_2OCl_3 ⁻ (m/z 252), and Zn_3OCl_5 ⁻ (m/z 388) are apparent.²⁰

For ionic liquids with R < 0.5, the chloride ions being in excess, it was expected that Zn(II) would be present mainly as ZnCl₄²⁻. However, the isotopic pattern corresponding to $ZnCl_4^{2-}$ (m/z = 104) is not observed. In contrast, the isotopic pattern corresponding to $ZnCl_3^-$ (m/z = 171) is always present, even for R = 0.1. Furthermore, the cluster anions [(BMMI)_x Cl_{x+1}] observed in ESI mass spectra of pure [BMMI][Cl] are present in the spectrum of ionic liquids with R < 0.5 and disappear totally for R = 0.5. The intensity of the isotopic pattern due to $ZnCl_3^-$ increases monotonously with R to reach 100% for R = 0.33, 0.5 and 0.66, and then sharply decreases to 60% for R = 0.75, which reveals that $ZnCl_3^-$ is still the main Zn(II) species. For R = 0.66, the peaks corresponding to the anions $Zn_2Cl_5^-$ (m/z = 306.6) and $Zn_3Cl_7^-$ (m/z = 442.4) simultaneously appear. The intensity of the peak corresponding to $Zn_3Cl_7^-$ varies from 85% to 100% for R = 0.6 and 0.75, respectively; in contrast, the intensity of the peak corresponding to Zn_2Cl_5^- stays constant ($\approx 44\%$) for R = 0.6 and 0.75.

A MS/MS experiment on the peak at m/z = 414 of the isotopic pattern corresponding to $Zn_3Cl_7^-$ gave the isotopic pattern corresponding to $Zn_2Cl_5^-$. This result supports the fact that $Zn_2Cl_5^-$ could be formed during the fragmentation of $Zn_3Cl_7^-$, which is coherent with the simultaneous appearance of the two anions when R > 0.5. While $Zn_3Cl_7^-$ is present in the media, the formation of $Zn_2Cl_5^-$ is not proven by this

Fig. 4 IR spectra [4 μ L of pyridine were added to 0.1 M ionic liquids (IL) in CD₃CN, in order to obtain molar ratios of pyridine ν s ionic liquid equal to 1] of a) CD₃CN + pyridine, a') subtraction of CD₃CN bands; of solution of [BMMI][Cl]–ZnCl2 + pyridine in CD₃CN b) R=0.25, c) R=0.33, d) R=0.5, e) R=0.66, f) R=0.75.

analysis. However, the ESI⁻ results indicate that for R < 0.5 only the anions Cl⁻, ZnCl₃⁻ are present, for R = 0.5 there is a single anion ZnCl₃⁻, and for R > 0.5 there is no Cl⁻, but a mixture of chlorozincates ZnCl₃⁻, Zn₃Cl₇⁻ and perhaps Zn₂Cl₅⁻.


Determination of Lewis acidity

Pyridine has been used as a probe molecule for the determination of the Lewis acidity of the synthesized chlorozincate ionic liquids by monitoring, in the infrared spectra, the bands in the 1400–1700 cm⁻¹ region arising from its ring vibrational modes. 48,49 Fig. 4 depicts the infrared spectra obtained from a solution of [BMMI][Cl]-ZnCl₂ and pyridine (molar ratio 1:1) in CD₃CN for different values of R. In the infrared spectra, CD₃CN shows overlapping of bands in the 2400-2200 cm⁻¹ region [ν (CN) and ν (CD)] while in the 1650–1400 cm⁻¹ region there are no parasite bands (see spectrum a in Fig. 4). However, firstly there is coordination of CD₃CN on the Lewis acidic centre as reported in the literature, 43 then due to the large excess of pyridine (ratio pyridine: ionic liquid = 1) a partial ligand exchange occurs between acetonitrile and pyridine, which allows the Lewis acidic character of these ionic liquids to be determined from the evolution of the band at 1439 cm⁻¹. When R increases, the band at 1439 cm⁻¹ decreases and finally disappears completely for R = 0.66 (spectra b-e in Fig. 4). Simultaneously, for R = 0.25 two bands at 1446 and 1608 cm^{-1} , spectrum b in Fig. 4, appear and shift to 1454 and 1615 cm⁻¹, respectively, for R = 0.75 (Fig. 4, spectrum f). These bands are characteristic of pyridine coordinated to Lewis acid sites. This acidity increases with R. These results are in accordance with the literature. ⁴³ A band near 1540 cm⁻¹ is also present and is an indication of the formation of pyridinium ion resulting from the presence of Brønsted acidic sites, probably due to residual protons.

Evolution of the structure of [BMMI][ZnCl₃] with temperature

The ¹³C solid state NMR spectra of neat [BMMI][Cl] and neat [BMMI][ZnCl₃] were obtained at 25 and 100 °C (Fig. 5). At 25 °C (Fig. 5, top) the spectra of the two ionic liquids are different in pattern and chemical shifts, while they become identical at 100 °C (Fig. 5, bottom).

The 35 Cl liquid NMR spectra of neat [BMMI][Cl] and [BMMI][ZnCl₃] were obtained at 110 °C. The δ^{35} Cl chemical shifts of [BMMI][Cl] and [BMMI][ZnCl₃] are 84 and 800 ppm,

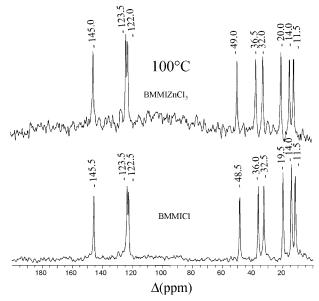


Fig. 5 13 C NMR spectra of [BMMI][Cl] and [BMMI][ZnCl₃] at 25 $^{\circ}$ C (top) and 100 $^{\circ}$ C (bottom).

respectively. However, the very broad peak due to the chlorine resonance of [BMMI][ZnCl₃] at 800 ppm at t=0 shift to 400 ppm in 20 min, then moves more slowly to 250 pm after 60 min, then stays unchanged (Fig. 6).

These observations were reversible and reproducible for independently prepared samples. These results from ³⁵Cl NMR corroborate those of the ¹³C NMR. There is an evolution of the structure of the ionic liquid [BMMI][ZnCl₃] at 100–110 °C towards a dissociated structure such as [BMMI···Cl···ZnCl₂].

Discussion

The mass spectrometry results indicate that, for $0 \le R \le 0.5$, only the anions Cl⁻ and ZnCl₃⁻ are present. Yet, for these value of R the ¹³C solid state NMR spectra show that the ionic liquids with R = 0 and R = 0.5 correspond to a single product, [BMMI][Cl] and [BMMI][Zn_xCl_y], respectively, and that those with 0 < R < 0.5 are a mixture of these two products, the ratio [BMMI][Zn_xCl_y]: [BMMI][Cl] varying with R. It can be deduced from these two analyses that only the species [BMMI][Cl] and [BMMI][ZnCl₃] are present when $0 \le R \le 0.5$. With these ionic liquids having $R \le 0.5$, in the presence of pyridine the wavenumber of the band corresponding to coordination at the Lewis acid sites was 1450 cm⁻¹, indicating a Lewis acid character of these ionic liquids.

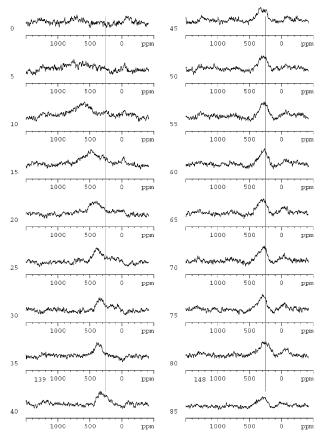


Fig. 6 35 Cl NMR spectra of [BMMI][ZnCl₃] at 110 $^{\circ}$ C as a function of time (min).

For the ionic liquids with R > 0.5 the anions $ZnCl_3^-$ and Zn₃Cl₇ were unambiguously identified. However, the presence of Zn₂Cl₅⁻ cannot be totally excluded in spite of the MS/ MS experiment results. For these values of R, due the broadness of the peak in the 13 C solid state NMR spectra (spectrum f in Fig. 3), it is only possible to conclude that there is no [BMMI][Cl] while [BMMI][ZnCl₃] is still present for R = 0.66. However, for R = 0.75 the DSC results show a sharp melting point (88.4 °C), the resonance due to [BMMI][ZnCl₃] in the ¹³C solid state NMR spectra (spectrum g in Fig. 3) is minor, and in the presence of pyridine the wavenumber of the bands corresponding to coordination at Lewis acid sites are clearly different at 1454 and 1618 cm⁻¹, which allows us to propose at this point that the Zn₃Cl₇⁻ anion becomes predominant. Therefore, when R > 0.5, two species are mainly present: [BMMI][ZnCl₃] and [BMMI][Zn₃Cl₇]. Note that the pyridine molecular probe can differentiate between ZnCl₃⁻ and Zn₃Cl₇⁻ by coordination at the different acidic sites.

The results of ³⁵Cl and of ¹³C NMR indicate an evolution of the structure of the ionic liquid [BMMI][ZnCl₃] at 100–110 °C towards a dissociated structure such as [BMMI···Cl···ZnCl₂]. These results clearly establish that this reaction is reversible as a function of temperature and consequently that Cl⁻ anions and free ZnCl₂ are present in the media. This is fundamental information because we have recently demonstrated that there is an exchange reaction between the cations of the ligand and of the ionic liquids when Cl⁻ anion is present in the solution, leading to an evolution of the nature of the coordination sphere of the catalyst. 50 Stated otherwise, the organization of ions in ionic liquids has an influence on their interaction with the unsaturated substrate and consequently on their reactivity. These results could be very useful for the understanding of some catalytic results and underlines the importance of polynuclear anions that sequester free Cl⁻ anions.

Acknowledgements

We would like to thank Rhodia Recherches for a postdoctoral fellowship (to V. L.) and also undergraduate students M. Mouyon, M. Bouty and P. Bourbon for their participation in this work.

References

- 1 T. Welton, Chem. Rev., 1999, 99, 2071.
- 2 C. M. Gordon, Appl. Catal. A, 2001, 222, 101.
- 3 R. Sheldon, Chem. Commun., 2001, 2399.
- 4 J. Dupont, R. F. de Souza and P. A. Z. Suarez, *Chem. Rev.*, 2002, 102, 3667.
- 5 H. Olivier-Bourbigou and L. Magna, J. Mol. Catal. A, 2002, 182–183, 419.
- D. Zhao, M. Wu, Y. Kou and E. Min, Catal. Today, 2002, 74, 157.
- 7 (a) P. Wasserscheid and T. Welton, *Ionic Liquids in Synthesis*, Wiley-VCH, Weinheim, 2003; (b) D. Haristoy and D. Tsiourvas, *Liq. Cryst.*, 2004, 31, 697.
- A. P. Abbott, G. Capper, D. L. Davies and R. K. Rasheed, *Chem.-Eur. J.*, 2004, 10, 3769.
- 9 R. T. Carlin and R. A. Osteryoung, J. Mol. Catal., 1990, 63, 125.
- Y. Chauvin, S. Einloft and B. H. Olivier, *Ind. Eng. Chem. Res.*, 1995, 34, 1149.
- K. Yoo, V. V. Namboodiri, R. S. Varma and P. G. Smirniotis, J. Catal., 2004, 222, 511.
- 12 Y. Gu, F. Shi and Y. Deng, J. Mol. Catal. A, 2004, 212, 71.
- 13 P. J. Dyson, in *Solvents and Ionic Liquids*, eds. M. C. Cleverty and T. J. Meyer, Elsevier-Pergamon, London, 2004, vol. 1, section V (Comprehensive Coordination Chemistry series II).
- 14 R. A. Osteryoung, in *Molten Salt Chemistry*, eds. G. Manatov and D. Marrassi, Reidel, Dordrecht, 1987, vol. 202, pp. 329–364 (ASI Series C).
- R. A. Osteryoung and J. Robinson, J. Am. Chem. Soc., 1979, 101, 323.
- J. T. A. Zawodzinski and R. A. Osteryoung, *Inorg. Chem.*, 1989, 28, 1710.
- 17 Y. Chauvin, F. Di Marco-Van Tiggelen and H. Olivier, J. Chem. Soc., Dalton Trans., 1993, 1009.
- B. Gilbert, Y. Chauvin and I. Guibard, Vib. Spectrosc., 1991, 1, 299.
- R. T. Carlin, R. A. Osteryoung, J. S. Wilkes and J. Rovanf, *Inorg. Chem.*, 1990, 29, 3003.
- S.-I. Hsiu, J.-F. Huang, I.-W. Sun, C.-H. Yuan and J. Shiea. *Electrochim. Acta*, 2002, 47, 4367.
- 21 A. P. Abbott, G. Capper, D. L. Davies and R. Rasheed, *Inorg. Chem.*, 2004, 43, 3447.
- 22 M. S. Sitze, E. R. Schreiter, E. V. Patterson and R. G. Freeman, *Inorg. Chem.*, 2001, **40**, 2298.
- 23 P. Koelle and R. Dronskowski, *Inorg. Chem.*, 2004, **43**, 2803.
- 24 A. P. Abbott, G. Capper, D. L. Davies, H. L. Mnro, R. K. Rasheed and V. Tambyrajah, *Chem. Commun.*, 2001, 2010.
- 25 A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and V. Tambyrajah, *Green Chem.*, 2002, 4, 24.
- 26 M. Hasan, I. V. Kozhevnikov, M. Siddiqui, H. Rafiq, A. Steiner and N. Winterton, *Inorg. Chem.*, 1999, 38, 5637.
- 27 J.-Z. Yang, P. Tian, W.-G. Xu, B. Xu and S.-Z. Liu, *Thermochim. Acta*, 2004, 412, 1.
- N. Koura, T. Endo and Y. Idemoto, J. Non-Cryst. Solids, 1996, 205, 650.
- 29 L. Simanavicius, A. Stakenas and A. Starkis, *Electrochim. Acta*, 1997, 42, 1581.
- 30 Y.-F. Lin and I.-W. Sun, Electrochim. Acta, 1999, 44, 2771.
- P.-Y. Chen, M.-C. Lin and I.-W. Sun, J. Electrochem. Soc., 2000, 147, 3350.
- 32 P.-Y. Chen and I. W. Sun, Electrochim. Acta, 2001, 46, 1169.
- 33 J. Dupont, P. A. Z. Suarez, A. P. Umpierre and R. F. deSouza, Catal. Lett., 2001, 73, 211.
- 34 J.-F. Huang and I. W. Sun, *Electrochim. Acta*, 2004, 49, 3251.
- 35 A. P. Abbott and D. L Davies, Pat. WO 00/56700, 2000.
- 36 Morales, V. Ambyrajah, P. R. Jenkins, D. L. Davies and A. P. Abbott, Chem. Commun., 2004, 158.
- 37 F. G. Sherif, L. J. Shyu and C. C. Greco, US Pat. 5,824,832, 1998.
- 38 K. Herbst, J. Houzvicka, B. Tofte Jespersen and J. Zavilla, *EP1 Pat.* 346 768, 2003 (Haldor Topsoe A/S).
- H. S. Kim, J. J. Kim, H. Kim and H. G. Jang, J. Catal., 2003, 220, 44.

- C. Vallée, Y. Chauvin, C. C. Santini and J.-C. Galland, Rhodia 40 Polyamide Intermediates: Fr.04.08440, 2004.
- C. Vallée, C. Valério, K. Chauvin Yves, G. P. Niccolai, J.-M. Basset and J.-C. Galland, *Pat.* WO 03024919, 2003.
- C. Vallee, C. Valério, Y. Chauvin, G. P. Niccolai, J.-M. Basset, C. C. Santini, J.-C. Galland and B. Didillon, *J. Mol. Catal. A*, 2004, **214**, 71.
- Y.-l. Yang and Y. Kou, Chem. Commun., 2004, 226.
- J.-H. So and P. Boudjouk, *Inorg. Chem.*, 1990, **29**, 1592. P. B. Webb, M. F. Sellin, T. E. Kunene, S. Williamson, A. M. Z. Slawin and D. J. Cole-Hamilton, J. Am. Chem. Soc., 2003, 125,
- C. Hardacre, J. D. Holbrey, P. McCormac, S. E. J. McMath, M. Nieuwenhuyzen and K. R. Seddon, J. Mater. Chem., 2001, 11,
- (a) F. C. Gozzo, L. S. Santos, R. Augusti, C. S. Consorti, J. Dupont and M. N. Eberlin, *Chem. Eur. J.*, 2004, **10**, 6197-6193; (b) P. J. Dyson, I. Khalaila, S. Luettgen, J. McIndoe, J. Scott and D. Zhao, Chem. Commun., 2004, 19, 2204, and references therein.
- E. P. Parry, J. Catal., 1963, 2, 371. 48
- 49
- G. Busca, Catal. Today, 1998, 41, 191. V. Lecocq, C. C. Santini, F. Lefevbre, Y. Chauvin, J.-M. Basset 50 and J. C. Galland, 2004, submitted.